Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный энергетический университет имени В.И. Ленина»

Кафедра теоретических основ теплотехники

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛООТДАЧИ ТВЕРДОГО ТЕЛА МЕТОДОМ РЕГУЛЯРНОГО РЕЖИМА

Методические указания по выполнению лабораторной работы по дисциплине "Тепломассообмен" Составители: В.В.БУХМИРОВ,

Ю.С. СОЛНЫШКОВА,

М.В. ПРОРОКОВА

Редактор Т.Е. СОЗИНОВА

Методические указания содержат краткую теоретическую справку по изучаемому вопросу, описание лабораторного стенда, методику проведения и обработки результатов эксперимента.

Предназначены для студентов, изучающих курс "Тепломассообмен".

Методические указания утверждены цикловой методической комиссией ТЭФ

Рецензент

кафедра теоретических основ теплотехники ФГБОУ ВПО "Ивановский государственный энергетический университет имени В. И. Ленина".

Задание

- 1. Экспериментально определить коэффициент теплоотдачи методом регулярного режима.
- 2. Сравнить экспериментальное значение коэффициента теплоотдачи с результатами расчета по критериальным формулам.

Введение

Нестационарная теплопроводность — перенос теплоты в неоднородном, меняющемся во времени $(\partial T/\partial \tau \neq 0)$ поле температур, обусловленный взаимодействием микрочастиц вещества (молекул, атомов, свободных электронов и т.п.).

Дифференциальное уравнение теплопроводности для тел простейшей или классической формы при допущении независимости теплофизических свойств от температуры и отсутствии внутренних источников теплоты имеет вид

$$\frac{\partial \mathbf{T}}{\partial \tau} = \mathbf{a} \left(\frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}_1^2} + \frac{\mathbf{k} - 1}{\mathbf{x}_1} \frac{\partial \mathbf{T}}{\partial \mathbf{x}_1} \right),\tag{1}$$

где Т – температура, 0 С (К); τ – время, c; x_1 – координата, направленная поперек пластины или вдоль радиуса цилиндра и шара, м; c' – удельная объемная теплоемкость, Дж/(м 3 К); λ – коэффициент теплопроводности, Bt/(mK); $a = \lambda/c'$ – коэффициент температуропроводности, 2 С; κ =1, 2 или 3 – коэффициенты формы неограниченной пластины, неограниченного цилиндра или шара соответственно.

Для расчета температурных полей тел простейшей формы используют безразмерную форму записи дифференциального уравнения теплопроводности (1):

$$\frac{\partial \Theta}{\partial F_0} = \frac{\partial^2 \Theta}{\partial X^2} + \frac{k - 1}{X} \frac{\partial \Theta}{\partial X},\tag{2}$$

где
$$Fo = \frac{a \cdot \tau}{R^2} -$$
 критерий Фурье: (3)

R – размер расчетной области, м; τ – время нагрева (охлаждения), с;

$$X = \frac{X}{R}$$
 – безразмерная координата. (4)

$$\Theta = \frac{T_{\rm f} - T}{T_{\rm f} - T_{\rm o}}$$
 — безразмерная температура (при ГУ III рода). (5)

Графическое представление температурного поля при граничных условиях III рода приведено на рис. 1.

При ГУ III рода выделяют три стадии развития температурного поля:

1 стадия — начальная, при которой наблюдается значительное влияние начальных условий на развитие температурного поля. Существует при $Fo \le 1/3k$;

2 стадия – установившийся режим, который при ГУ III рода называется *регулярным*; влияние начальных условий на развитие температурного поля при расчете регулярного режима не учитывают;

3 стадия — тепловое равновесие; теплообмен между телом и окружающей средой в данном режиме отсутствует.

Решение уравнения (2) для регулярного режима при ΓY III рода имеет вид

$$\Theta^{\prime\prime\prime}(X, Fo) = A_1 \cdot \Lambda_2(\mu_1 X) \exp(-\mu_1^2 \cdot Fo), \tag{6}$$

где A_n – коэффициент уравнения, $A_n = f(Bi)$;

 Λ_2 – Лямбда-функция температурного поля при ГУ III рода; μ_1 – первый корень характеристического уравнения;

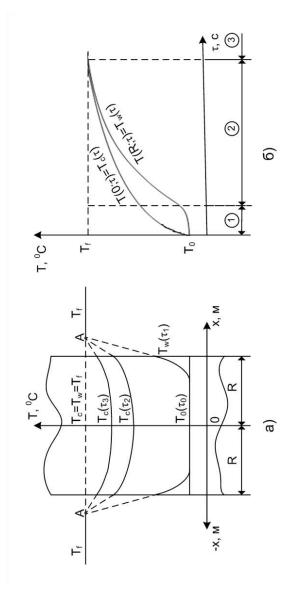


Рис. 1. Графическое представление температурного поля при ГУ III рода

Для термически тонких тел (Bi<0,1):

$$\mu_1 = \sqrt{kBi},\tag{7}$$

где
$$Bi = \frac{\alpha \cdot R}{\lambda}$$
 — критерий Био. (8)

Прологарифмировав обе части уравнения (6), получим $\ln \Theta''' = \ln C - \mu_1^2 Fo$.

Подставив вместо критерия Fo его значение, имеем

$$\ln \Theta^{\prime\prime\prime} = \ln C - \frac{\mu_1^2 a}{R^2} \tau.$$

Комплекс $\frac{\mu_1^2 a}{R^2}$ обозначают как m и называют memnom нагрева (охлаждения) тела:

$$m = \frac{\mu_1^2 a}{R^2}.$$
 (9)

С учетом этого

$$\ln \Theta^{\prime\prime\prime} = \ln C - m\tau. \tag{10}$$

Анализ выражения (10) показывает:

- 1) $\ln \Theta^{'''}$ изменяется во времени по линейному закону;
- 2) темп нагрева m является величиной постоянной ($m \neq f(\tau; x)$) и численно равен тангенсу угла наклона функции $\ln \Theta^{\prime\prime\prime} = f(\tau)$ к оси абсцисе: $m = tg\alpha$ (рис. 2).

Темп нагрева (охлаждения) m находят экспериментально.

Часто в расчетах вместо безразмерной температуры Θ''' используют избыточную температуру θ''' . Для процесса охлаждения θ''' имеет вид

$$\theta^{\prime\prime\prime} = T - T_{\rm f},\tag{11}$$

где T — температура тела, ${}^{0}C;$ T_{f} — температура флюида, ${}^{0}C.$

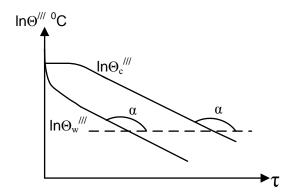


Рис. 2. Графическое представление зависимости $\ln \Theta''' = f(\tau)$ для теплового центра $\ln \Theta'''_{c}$ и поверхности тела $\ln \Theta'''_{w}$

Экспериментальная установка

Схема экспериментальной установки приведена на рис. 3. На передней панели расположены два двухканальных измерителя температуры типа 2ТРМО 1, 2, подключенные к трем хромель-копелевым термопарам. Первый канал измерителя 1 подключен к термопаре 4, измеряющей температуру дюралевого образца T_1 , второй канал подключен к термопаре 3, измеряющей температуру воздуха у поверхности образцов T_2 . Измеритель 2 подключен к термопаре 5, измеряющей температуру медного образца T_3 . На передней панели также находится тумблер 6 включения электропитания установки, тумблер 7 включения циркуляционного насоса 8, тумблер 9 включения водоподогревателя 10, устройство подъема 11 образцов из термостата 12, тумблер включения вентилятора 13.

На рис. 3 приведена принципиальная схема экспериментальной установки. Процесс нагрева двух образцов в воздушном термостате контролируется термопарами 4 и 5, размещенными в центре образцов. Температура воздуха в

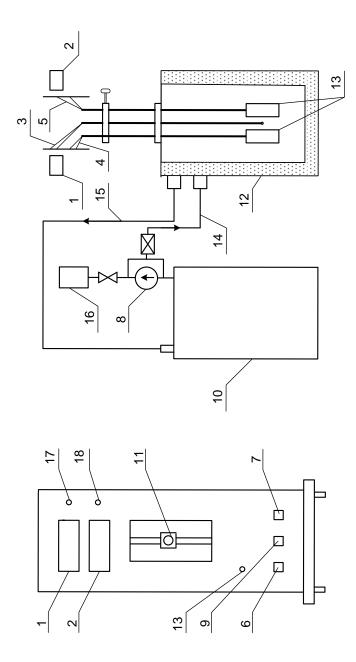


Рис. 3. Схема экспериментальной установки

термостате измеряется термопарой 3.

Диаметр образцов d=20 мм, длина l=70 мм. Масса медного образца $m_{\rm M}=180$ г, дюралевого $m_{\rm M}=55$ г.

Порядок проведения эксперимента

- 1. Предварительно изучить устройство экспериментальной установки и методику проведения эксперимента.
 - 2. Подготовить журнал наблюдений.
- 3. О готовности к проведению эксперимента сообщить преподавателю.
- 4. Включить установку тумблером 6, циркуляционный насос тумблером 7, водоподогреватель тумблером 9.
- 5. Регулятором на водоподогревателе установить режим нагрева по указанию преподавателя, подготовить секундомер.
- 6. После того как сигнальная лампочка на водоподогревателе 10 погаснет, извлечь образцы из термостата и выключить водонагреватель.
- 7. Включить тумблерами 17 и 18 измерители температур 1 и 2, измерить температуры образцов T_1 и T_3 и воздуха T_2 .
- 8. Каждые 30 секунд фиксировать в журнале наблюдений показания измерителя температуры среды T_2 и образцов T_1 и T_3 .

Таблица 1. Журнал наблюдений

№	τ, c	Показания измерительного прибора 2ТРМО				
		T ₁ , °C	T ₂ , °C	T ₃ , °C		
1						
2						
:						
N						

Обработка результатов эксперимента

- 1. Рассчитать избыточную температуру образцов $\theta^{///}$ в каждый момент времени по выражению (11).
- 2. Построить зависимость $\ln \theta''' = f(\tau)$ и обозначить на графике участок, соответствующий регулярному режиму (рис. 4).
- 3. Рассчитать темп нагрева (охлаждения) для образцов, используя значения $\theta^{\prime\prime\prime}$ для двух моментов времени регулярного режима (10):

$$m = \frac{\ln \theta'''_1 - \ln \theta'''_2}{\tau_2 - \tau_1},$$

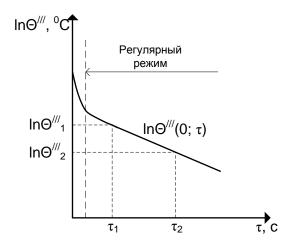


Рис. 4. Зависимость $ln\theta'''=f(\tau)$ при ГУ III рода

где $\ln \theta'''_{\ 1}$ и $\ln \theta'''_{\ 2}$ соответствуют моментам времени τ_1 и τ_2 регулярного режима

4. Используя значение темпа нагрева и выражения (7) и (8), рассчитать значение коэффициента теплоотдачи для медного и дюралевого образцов

$$\alpha = \frac{mc'R}{2}$$
,

где с' — удельная объемная теплоемкость образца, $Дж/(M^3 \cdot {}^0C)$ [3].

Полученное значение коэффициента теплоотдачи характеризует не только конвективный теплообмен с внешней средой, но и теплообмен посредствам теплового излучения:

$$\alpha = \alpha_{\kappa} + \alpha_{\pi}, \tag{12}$$

где α_{κ} – коэффициент теплоотдачи конвекцией, $Br/(M^2\cdot {}^0C)$; α_{π} – коэффициент теплоотдачи излучением, $Br/(M^2\cdot {}^0C)$.

Коэффициент α_n определяется выражением:

$$\alpha_{_{\Pi}} = \frac{q_{_{\Pi}}}{(T_{_{W}} - T_{_{2}})},\tag{13}$$

где T_w – температура поверхности цилиндра, 0C ; принимается среднее значение температуры тела (T_1 или T_3) в процессе охлаждения.

 T_2 – температура окружающего воздуха, ${}^{0}C$;

 q_{π} — поверхностная плотность лучистого теплового потока, B_T/M^2 :

$$q_{x} = \varepsilon_{yy} \sigma_{0} (T_{yy}^{4} - T_{3}^{4}),$$
 (14)

где ϵ — интегральная степень черноты тела (для меди — $\epsilon_{\text{м}} = 0.15$; для дюрали — $\epsilon_{\text{д}} = 0.07$);

 $\sigma_0 = 5,67 \cdot 10^{-8} \, \mathrm{Bt/(m^2 \cdot K^4)} - \mathrm{постоянная} \, \mathrm{Стефана-Больцмана}.$

Искомый коэффициент конвективной теплоотдачи с учетом (12), (13) и (14):

$$\alpha_{_{K}} = \alpha - \frac{\epsilon_{_{\text{mp}}}\sigma_{_{0}}(T_{_{\text{w}}}^4 - T_{_{3}}^4)}{(T_{_{\text{w}}} - T_{_{3}})}. \label{eq:alpha_K}$$

Определение коэффициента конвективной теплоотдачи по критериальным формулам

1. Рассчитать безразмерный коэффициент теплоотдачи (критерий Нуссельта Nu) для образцов по известным критериальным формулам [1]. Начальную температуру тел принять равной температуре тел в момент извлечения из термостата.

При расчете критерия Nu рекомендуется использовать критериальную формулу М.А. Михеева для расчета теплоотдачи при свободной конвекции около вертикальных пластин, вертикальных труб, горизонтальных пластин, горизонтальных труб и шаров.

$$\overline{Nu}_{m} = C \cdot Ra_{m}^{n}. \tag{15}$$

Определяющие параметры:

 $T_0 = T_m = 0.5 \cdot (T_f + T_w)$ — средняя температура пограничного слоя, 0C :

где $T_f = T_2 -$ температура воздуха, 0C ;

 $R_0 = h - вы высота вертикального цилиндра, м;$

Таблица 2. Значения коэффициентов С и п в формуле (15)

$Ra_{m} = Gr_{m} \cdot Pr_{m}$	Режим течения	С	n
<10 ⁻³	Пленочный	0,5	0
$10^{-3} \div 5 \cdot 10^2$	Переходный от пленочного к ламинарному	1,18	1/8
$5\cdot 10^2 \div 2\cdot 10^7$	Ламинарный и переходный к турбулентному	0,54	1/4
$> 2 \cdot 10^7$	Турбулентный	0,135	1/3

2. Рассчитать коэффициент конвективной теплоотдачи α_{κ} для образцов, используя выражение:

$$Nu = \frac{\alpha_{\kappa} \cdot R}{\lambda_{\epsilon}},$$

где λ_f — коэффициент теплопроводности воздуха при определяющей температуре, $BT/M \cdot {}^0C$.

3. Определить относительную погрешность эксперимента для медного и дюралевого образца по выражению

$$\delta = \frac{\alpha_{\text{Teop.}} - \alpha_{\text{эксп.}}}{\alpha_{\text{Teop.}}} \cdot 100\%, \tag{18}$$

где $\alpha_{\text{теор.}}$ – результат расчета коэффициента теплоотдачи по критериальным формулам, $\text{Br/}(\text{M} \cdot {}^{0}\text{C})$;

 $\alpha_{\mbox{\tiny ЭКСП.}}$ — результат обработки экспериментальных данных, $B_T/(\mbox{\scriptsize M}\cdot^0C).$

- 4. Результаты расчета свести в таблицу 3.
- 5. Провести анализ полученных данных, сделать выводы.

Таблица 3. Расчетные данные

No	τ, c	Образец (медный/дюралевый)					
		θ, ⁰ C	lnθ	m, c ⁻¹	$\alpha_{\text{эксп.}}$ BT/($M^2 \cdot {}^0$ C)	$\alpha_{\text{reop.}}$ BT/($M^2 \cdot {}^0$ C)	δ, %
1							
2							
:							
N							

Контрольные вопросы

- 1. Дайте определение температурного поля. Назовите характеристики температурного поля.
- 2. Дайте характеристику нестационарного процесса теплопроводности. Дайте его графическое изображение для неограниченной пластины при ГУ III рода.
- 3. Дайте определение безразмерной температуры, критерия Фурье, критерия Био.
- 4. Что такое граничные условия? Назовите и дайте характеристику видам граничных условий.
- 5. Дайте характеристику безразмерной и избыточной температур, укажите отличия расчетных формул для режимов нагрева и охлаждения.
- 6. Какие режимы нагрева (охлаждения) можно выделить при ГУ III рода?
- 7. Каковы основные особенности регулярного режима при ГУ III рода?
- 8. Дайте характеристику коэффициенту теплоотдачи. Основные расчетные формулы: безразмерный коэффициент теплоотдачи, закон теплоотдачи Ньютона.
- 9. Какова связь между коэффициентом теплопроводности, коэффициентом температуропроводности и удельной объемной теплоемкостью материалов?
 - 10. Поясните понятие «темп нагрева» (охлаждения).
- 11. Что характеризуют коэффициенты температуропроводности, теплопроводноти и теплоотдачи?
- 12. Поясните принцип работы экспериментальной установки и назначение отдельных элементов установки.

Библиографический список

- 1. **Бухмиров, В.В.** Расчет конвективной теплоотдачи (основные критериальные уравнения): методические указания / ГОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина».— Иваново, 2007. http://ispu.ru/files/u2/SP, bez nomera Raschet koefficienta konvektivnoy teplootdachi osnov. kriter. uravneniya.pdf
- 2. **Бухмиров, В.В.** Нестационарная теплопроводность: справочные материалы для решения задач / В.В. Бухмиров, Д.В. Ракутина, Ю.С. Солнышкова / ФГБОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина».— Иваново, 2013. Библ. № 1684;
- 3. **Бухмиров, В.В.** Справочные материалы для решения задач по курсу «Тепломассообмен»: учебное пособие / В.В. Бухмиров, Д.В. Ракутина, Ю.С. Солнышкова / ГОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина».— Иваново, 2009.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛООТДАЧИ ТВЕРДОГО ТЕЛА МЕТОДОМ РЕГУЛЯРНОГО РЕЖИМА

Методические указания по выполнению лабораторной работы по дисциплине "Тепломассообмен"

Составители: БУХМИРОВ Вячеслав Викторович СОЛНЫШКОВА Юлия Сергеевна ПРОРОКОВА Мария Владимировна

Редактор Т.В. Соловьева

Подписано в печать Формат $60 \times 84^{1}/_{16}$. Печать плоская. Усл.печ.л. 0,93. Тираж 100 экз. Заказ № ФГБОУ ВПО "Ивановский государственный энергетический университет имени В.И.Ленина" 153003, г. Иваново, ул. Рабфаковская, 34. Отпечатано в УИУНЛ ИГЭУ.